
Volume-preserving maps, source-free systems and their local structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 5601

(http://iopscience.iop.org/0305-4470/39/19/S16)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 5601–5615 doi:10.1088/0305-4470/39/19/S16

Volume-preserving maps, source-free systems and
their local structures

Zai-jiu Shang

Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100080, People’s Republic of China

E-mail: zaijiu@amss.ac.cn

Received 5 September 2005, in final form 30 November 2005
Published 24 April 2006
Online at stacks.iop.org/JPhysA/39/5601

Abstract
In this paper, we study local structures of volume-preserving maps and
source-free vector fields, which are defined in the Euclidean n-space Rn with
n � 3. First, we prove that any volume-preserving map, defined in some
neighbourhood of the origin, can be represented as a composition of n − 1
essentially two-dimensional area-preserving maps. This result can be viewed
as an analogue of the following known fact (Feng and Shang 1995 Volume-
preserving algorithms for source-free dynamical systems Numer. Math. 71
451–63): any source-free vector field on Rn can be represented as a sum of
n− 1 essentially two-dimensional Hamiltonian vector fields. Then, we present
a local representation of source-free vector fields under volume-preserving
coordinate changes. Finally, we construct a Lie algebra of skew-symmetric
tensor potentials of second order associated with source-free vector fields. The
Lie algebra turns out to be isomorphic to the Lie algebra of source-free vector
fields.

PACS number: 02.60.−x
Mathematics Subject Classification: 65P10

1. Introduction

In this paper, we first study volume-preserving maps locally defined in Euclidean n-space
Rn with n � 3. The main result to be proved is that any volume-preserving map defined in
some neighbourhood of the origin can be represented as a composition of n − 1 essentially
two-dimensional area-preserving maps. Here, an essentially two-dimensional area-preserving
map is a volume-preserving map which leaves some n − 2 coordinate functions invariant.
This result can be naturally conjectured from its infinitesimal analogue which was observed
in [1]: any source-free vector field on Rn can be represented as a sum of n − 1 essentially
two-dimensional Hamiltonian fields. This is a key observation leading to a nice construction
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of volume-preserving integrators for source-free systems [1]. Note that the Lie algebra of the
Lie group of volume-preserving diffeomorphisms is just formed by source-free vector fields.
The proof of the main result, however, does not follow directly from the Lie group and Lie
algebra correspondence and, therefore, is necessary to be presented.

This result gives a new way to generate, in the local sense, general volume-preserving
maps, because any two-dimensional area-preserving map can be completely specified by a
so-called generating function. As a result, a volume-preserving mapping of n-dimensions is
completely specified by n − 1 functions—this is also a natural consequence of the volume-
preserving property.

The problem of constructing general volume-preserving maps was first raised, to my
knowledge, by Thyagaraja and Haas, who found a type of generating function to represent
the most general volume-preserving mappings of three dimensions which are homotopic to
the identity map [2]. This problem is relevant to solving source-free dynamical systems
which are of great importance in many branches of physics. The generating function
approach of Thyagaraja and Haas was systematically generalized by the author to arbitrary
dimensions, with the development of Hamilton–Jacobi equations for source-free systems [3].
Quispel discovered independently a similar scheme to generate volume-preserving maps [4].
McLachlan and Quispel discussed the generating functions for dynamical systems in a very
general setting [5]. These various types of generating functions have been applied to construct
volume-preserving algorithms for numerically solving source-free systems [1, 2, 4, 6].

In [7], Sternberg proved a normal form theorem for C∞ volume-preserving maps defined
in neighbourhoods of the origin, which is assumed to be a fixed point of the maps. Sternberg’s
theorem generalizes the corresponding result of Moser in two dimensions [8]. It turns out that
the set of germs of these normal forms falls into a finite number of classes, each of which is a
maximal commutative subgroup of the group of such volume-preserving maps. We observe in
this paper that each element of the maximal commutative subgroup is the composition of n−1
essentially two-dimensional area-preserving maps which are normal forms and commute with
one another.

Source-free vector fields are the infinitesimal counterparts of volume-preserving
diffeomorphisms. In section 3, we will study the representation of source-free vector fields
under volume-preserving coordinate changes. In three dimensions, the representation has a
very elegant form.

Source-free vector fields with the usual Jacobi–Lie bracket form a Lie algebra, which can
be completely expressed by skew-symmetric tensor potentials of second order [9, 1]. The
expression of source-free vector fields in terms of their tensor potentials automatically gives a
linear homomorphism X : TPn → SVn, where TPn is the space of all skew-symmetric tensor
fields of second order and SVn is the space of source-free vector fields on Rn. In section 4,
we introduce a bracket operation in TPn so that the bracket, naturally induced from it by
considering the module space TPn

/
TPc

n instead of considering the space TPn itself, is in
fact a Lie bracket, where TPc

n is the centre of TPn under the former bracket. Moreover, the
corresponding linear homomorphism induced from X is a Lie-algebra isomorphism between
TPn

/
TPc

n and SVn.

2. Representations of local volume-preserving diffeomorphisms with application
to volume-preserving integrators

In this section, we first prove some representation results for volume-preserving local
diffeomorphisms and then discuss the relationship of the representation with the volume-
preserving integrators constructed in [1].
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Theorem 1. Let S be a C∞ map from some neighbourhood of the origin of Rn into Rn.
Assume that S preserves the volume form

α = dx1 ∧ dx2 · · · ∧ dxn, (2.1)

where x1, x2, . . . , xn are Euclidean coordinates of Rn. Then there exist n − 1 essentially
two-dimensional area-preserving C∞ maps S1, . . . , Sn−1, which are well defined in a
neighbourhood of the origin, such that S = Sn−1 ◦ · · · ◦ S1. If S keeps the origin fixed,
then we may determine Sj , j = 1, 2, . . . , n − 1, in such a way that they keep the origin fixed
too.

Proof. Let S : (x1, x2, . . . , xn) → (x̂1, x̂2, . . . , x̂n) be given by

x̂i = si(x1, x2, . . . , xn), i = 1, 2, . . . , n (2.2)

and let

S(0) = (
x̂

(0)
1 , x̂

(0)
2 , . . . , x̂(0)

n

)
.

Because of the volume preservation of S, we may assume

∂s1

∂xi1

(x)

∣∣∣∣
x=0

�= 0 (2.3)

for some 1 � i1 � n. By the implicit function theorem, we can solve xi1 in terms of x̂1

from the first equation of (2.2), taking other coordinate variables involved in the equation as
parameters. Then, we have

xi1 = ŝ
(i1)
1 (w)

with ŝ
(i1)
1 being a uniquely determined C∞ function of variables w in a neighbourhood of w0,

where

w =
{

(x̂1, x2, . . . , xn), if i1 = 1

(x1, . . . , xi1−1, x̂1, xi1+1, . . . , xn), otherwise

and

w0 =
{(

x̂
(0)
1 , 0, . . . , 0

)
, if i1 = 1(

0, . . . , 0, x̂
(0)
1 , 0, . . . , 0

)
, otherwise.

We define S1, by distinguishing the cases i1 = 1 and i1 �= 1, as follows:

(i) i1 = 1. Define S1 : (x1, x2, . . . , xn) → (x̂1, x̂2, . . . , x̂n) by
x1 = ŝ

(1)
1 (x̂1, x2, . . . , xn)

x̂2 = ∫ x2

0
∂ŝ

(1)
1

∂x̂1
(x̂1, t, x3, . . . , xn) dt

x̂j = xj , j = 3, . . . , n;
(2.4)

(ii) i1 �= 1. Define S1 : (x1, x2, . . . , xn) → (x̂1, x̂2, . . . , x̂n) by
xi1 = ŝ

(i1)
1 (x1, . . . , xi1−1, x̂1, xi1+1, . . . , xn)

x̂i1 = ∫ x1

0
∂ŝ

(i1)

1
∂x̂1

(t, . . . , xi1−1, x̂1, xi1+1, . . . , xn) dt

x̂j = xj , j �= 1, i1.

(2.4′)
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In each case, S1 maps a neighbourhood of the origin to a neighbourhood of
(
x̂

(0)
1 , 0, . . . , 0

)
and is an essentially two-dimensional area-preserving mapping of C∞ class. Therefore,
S(1) = S ◦ S−1

1 is volume preserving and has the following form:
x̂1 = x1

x̂2 = s
(1)
2 (x1, x2, . . . , xn)

· · ·
x̂n = s(1)

n (x1, x2, . . . , xn)

(2.5)

which maps a neighbourhood of S1(0) = (
x̂

(0)
1 , 0, . . . , 0

)
to a neighbourhood of S(0). This

shows that S(1) is an essentially (n − 1)-dimensional C∞ volume-preserving mapping. In the
case S keeps the origin fixed, the above constructed map S1 and, therefore, the induced map
S(1) keep the origin fixed too. If n = 3, then the theorem is already proved with S2 = S(1). If
n > 3, then the volume-preserving property of S(1) implies that

∂s
(1)
2

∂xi2

(x)

∣∣∣∣
x=0

�= 0

for some 2 � i2 � n. The complete proof of the theorem is easily carried out by
induction. �

The above decomposition preserves the linearity structure in the sense that each
Si, i = 1, 2, . . . , n − 1, is linear whenever S is a linear map. The decomposition also
preserves the analyticity of the maps, i.e., if S is analytic, then each Si is analytic too. But if
S is of Ck with finite k, then Si , i = 1, 2, . . . , n − 1, will be a map of Ck−i class according to
the construction of the above decomposition. In this case, we need to assume k � n.

If S is a polynomial map, the above decomposition does not automatically imply that each
Si is also polynomial. An interesting problem is: whether a volume-preserving polynomial
map can be written as a composition of some volume-preserving polynomial maps each of
which is either linear or has a linear invariant function. If this is not the case, it is still interesting
to study what kind of volume-preserving polynomial maps has such a decomposition. This is
really a hard problem because it is closely related to the well-known Jacobian conjecture—
a long standing unsolved problem: a volume-preserving polynomial map f : Cn → Cn

is bijective and has a polynomial inverse. Lomeli and Meiss studied the normal forms of
quadratic volume-preserving maps in three dimensions and only proved a very special result
[10]: any quadratic volume-preserving map f : R3 → R3, that has a quadratic inverse, can
be written as the composition of an affine volume-preserving map T and a quadratic shear
S, f = T ◦ S, where S(x) = x + 1

2 (xT Px)v, v ∈ R3 and P is a symmetric matrix such
that Pv = 0. This result generalizes a result by Moser for quadratic symplectic maps [11].
Note that a quadratic shear not only has a linear invariant function but also has very simple
dynamics.

The decomposition discussed above is closely related to the construction of volume-
preserving integrators for source-free systems. It was proved in [1] that the map S :
(x1, x2, . . . , xn) → (x̂1, x̂2, . . . , x̂n), implicitly given by the following formula:

x̂1 = x1 + A1(x̂1, x2, . . . , xn),

x̂j = xj + Aj(x̂1, . . . , x̂j , xj+1, . . . , xn)

+
∫ x̂j

xj

∑j−1
l=1

∂Al

∂xl
(x̂1, . . . , x̂j−1, t, xj+1, . . . , xn) dt, j = 2, . . . , n − 1,

x̂n = xn + An(x̂1, . . . , x̂n−1, xn),

(2.6)
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is volume preserving if the C∞ vector field A = (A1, A2, . . . , An)
T is source free in the sense

that

divα A =
n∑

j=1

∂Aj

∂xj

= 0 (2.7)

and if (2.6) does define a mapping. Here, divα denotes the divergence operator with respect
to the canonical volume form α. Equation (2.6) gives a volume-preserving integrator of first
order if we take A(x) = ha(x) with h denoting the time step size and a(x) any source-free
vector field. It was already known in [1] that any map defined from (2.6) by source-free
vector field A = (A1, A2, . . . , An)

T is the composition of n − 1 essentially two-dimensional
area-preserving maps. Theorem 1 shows that this decomposition property is shared in fact
by the most general volume-preserving maps. Next, we show that (2.6) is also a formula to
generate the most general near-identity volume-preserving maps by source-free vector fields
A = (A1, A2, . . . , An)

T .

Theorem 2. For any C∞ volume-preserving map S : (x1, . . . , xn) → (x̂1, . . . , x̂n) which
keeps the origin fixed and has the identity linear part at the origin, there exists a source-free
vector field A = (A1, A2, . . . , An)

T , of C∞ class, such that S is generated by A from (2.6).

Proof. By assumption, we can write S in the form

x̂i = xi + ri(x1, x2, . . . , xn), i = 1, 2, . . . , n (2.8)

with the functions ri satisfying

|ri(x)| � M1‖x‖2, i = 1, 2, . . . , n, if ‖x‖ � δ1

for some constants M1 > 0 and δ1 > 0. Solving x1 in terms of x̂1 from the first equation of
(2.8), taking other variables as parameters, we obtain a uniquely determined C∞ function A1

of n variables in a neighbourhood of the origin such that

x1 = x̂1 − A1(x̂1, x2, . . . , xn), (2.9)

which is equivalent to the first equation of (2.8). Inserting (2.9) into the second equation
of (2.8) and then solving x2 in terms of x̂2 from the resulted equation, taking variables
x̂1, x3, . . . , xn as parameters, we obtain

x2 = x̂2 − r̃2(x̂1, x̂2, x3, . . . , xn)

with a uniquely determined C∞ function r̃2 by the implicit function theorem. Let

A2(x̂1, x̂2, x3, . . . , xn) = r̃2(x̂1, x̂2, x3, . . . , xn)

−
∫ x̂2

x2

∂A1

∂x̂1
(x̂1, t, x3, . . . , xn) dt

∣∣∣∣
x2=x̂2−̃r2(x̂1,x̂2,x3,...,xn)

.

Then the second equation of (2.8) is equivalent to the following:

x̂2 = x2 + A2(x̂1, x̂2, x3, . . . , xn) +
∫ x̂2

x2

∂A1

∂x̂1
(x̂1, t, x3, . . . , xn) dt. (2.10)

Now we use the induction argument to construct the vector field A = (A1, A2, . . . , An). For
this, assume that, for j = 1, 2, . . . , k, Aj have been defined well and the first k equations of
(2.8) are equivalent to the following:

x̂j = xj + Aj(x̂1, . . . , x̂j , xj+1, . . . , xn)

+
∫ x̂j

xj

j−1∑
l=1

∂Al

∂xl

(x̂1, . . . , x̂j−1, t, xj+1, . . . , xn) dt, j = 1, 2, . . . , k. (2.11)
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In (2.11)k , the summation
∑j−1

l=1 is understood to be zero when j = 1. To define Ak+1, we
first solve x1, x2, . . . , xk in terms of x̂1, x̂2, . . . , x̂k from the equations of (2.11)k , taking other
variables as parameters, and then insert them into the (k + 1)th equation of (2.8) and solve xk+1

in terms of x̂k+1 from the resulted equation, we obtain

xk+1 = x̂k+1 − r̃k+1(x̂1, . . . , x̂k+1, xk+2, . . . , xn)

which is equivalent to the (k + 1)th equation of (2.8), where r̃k+1 is a uniquely determined C∞

function by the implicit function theorem. Ak+1 is then defined as follows:

Ak+1(x̂1, . . . , x̂k+1, xk+2 . . . , xn) = r̃k+1(x̂1, . . . , x̂k+1xk+2, xn)

−
∫ x̂k+1

xk+1

k∑
l=1

∂Al

∂x̂l

(x̂1, . . . , x̂k, t, xk+2 . . . , xn) dt

∣∣∣∣
xk+1=x̂k+1−̃rk+1(x̂1,...,x̂k+1,xk+2,...,xn)

. (2.12)

Now we have already constructed the vector field A = (A1, A2, . . . , An)
T , which is

C∞-smooth in some neighbourhood of the origin, and the map S is re-expressed by A from
(2.11)n. The proof of theorem 2 is closed by the following lemma. �

Lemma 1. The vector field A constructed above is source free if the map S is volume
preserving.

Proof. With A1, . . . , An−1 constructed above, let

Ãn(x1, . . . , xn) = −
∫ xn

0

n−1∑
l=1

∂Al

∂xl

(x1, . . . , xn−1, t) dt.

Then the vector field Ã = (A1, . . . , An−1, Ãn)
T is source free, i.e.,

∂Ãn

∂xn

+
n−1∑
l=1

∂Al

∂xl

= 0.

Define the map S̃ : (x1, x2, . . . , xn) → (x̂1, x̂2, . . . , x̂n) by A = (A1, A2, . . . , An)
T from

(2.11)n where An is replaced by Ãn. Then S̃ is volume preserving [1]. It is clear that the map
E = S ◦ S̃−1 : (x1, x2, . . . , xn) → (w1, w2, . . . , wn) is well defined in some neighbourhood
of the origin and has the form

wj = xj , j = 1, . . . , n − 1, wn = xn + en(x1, x2, . . . , xn).

On the other hand, the volume-preserving property of S implies that E is volume preserving
as well, which shows that en does not depend on xn. It is easily verified, however, that

en(x) = An(x) − Ãn(E
−1(x)) +

∫ xn

xn−en(x)

n−1∑
l=1

∂Al

∂xl

(x1, . . . , xn−1, t) dt, (2.13)

where x = (x1, x2, . . . , xn). Taking derivative with respect to xn on both sides of (2.13) with
noting that en(x) does not depend on xn and that Ã is source free, we get

n∑
l=1

∂Al

∂xl

(x) = 0.

Lemma 1 is then proved. �

We denote by S(A) the map from x to x̂ determined by the vector field A =
(A1, A2, . . . , An)

T from (2.6). One observes from [1], sections 3 and 5, that for source-
free vector field A = (A1, A2, . . . , An)

T , the associated map S(A) has a decomposition of the
form S(A) = S(A(n−1)) ◦ · · · ◦ S(A(2)) ◦ S(A(1)), where A = ∑n−1

k=1 A(k) with

A(k) =
(

0, . . . ,
∂bk,k+1

∂xk+1
,−∂bk,k+1

∂xk

, 0, . . . , 0

)T
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and bk,k+1 is given by A as follows (see [1]):

b12 =
∫ x2

0
A1 dx2,

bk,k+1 =
∫ xk+1

0

(
Ak +

∂bk−1,k

∂xk−1

)
dxk+1, 2 � k � n − 2,

bn−1,n =
∫ xn

0

(
An−1 +

∂bn−2,n−1

∂xn−2

)
dxn −

∫ xn−1

0
An

∣∣∣∣
xn=0

dxn−1.

Note that here A(k) are essentially two-dimensional Hamiltonian vector fields and S(A(k)) are
defined in fact by the symplectic Euler method

x̂j = xj , j �= k, k + 1

x̂k = xk + ∂bk,k+1

∂xk+1
(x1, . . . , xk−1, x̂k, xk+1, . . . , xn)

x̂k+1 = xk+1 − ∂bk,k+1

∂xk
(x1, . . . , xk−1, x̂k, xk+1, . . . , xn)

(2.14)

which are essentially two-dimensional area-preserving maps. It is easily checked that in this
way theorem 2 gives the same decomposition of a volume-preserving map as that described
in the proof of theorem 1 where we take i1 = 1 and i2 = 2, etc. The interesting point is that
there exists an obvious algebra-group correspondence between source-free vector fields A and
the associated volume-preserving maps S(A) with the remarkable distributive law:

A = A(n−1) + · · · + A(2) + A(1)

↓ ↓ ↓ ↓ ↓
S(A) = S(A(n−1)) ◦ · · · ◦ S(A(2)) ◦ S(A(1)).

Note that the Lie-algebra operation ‘+’ satisfies the commutative law but the Lie-group
operation ‘◦’ does not—the ordering of S(A(k)), k = 1, 2, . . . , n − 1, in the composition
formula above is uniquely determined by S. Therefore, the distributive law

S(A(n−1) + · · · + A(2) + A(1)) = S(A(n−1)) ◦ · · · ◦ S(A(2)) ◦ S(A(1)) (2.15)

is in fact an ordered distributive law. The correspondence S may be specified by the permutation
12 · · · (n − 1), and we denote it by S12···(n−1). For other permutations {i1i2 · · · in−1} of
1, 2, . . . , n − 1, one may get other correspondences Si1i2···in−1 with the corresponding ordered
distributive law (2.15) where S = Si1i2···in−1 .

Another point which should be remarked here is that we only consider a special type of
normalizing conditions for uniqueness of the determination of a tensor potential b = (bij )

of source-free vector field A (see [1]). For other normalizing conditions, one may get other
decompositions of A and, accordingly, may get other correspondences.

Any other kind of symplectic methods for Hamiltonian systems, instead of symplectic
Euler (2.14), may be applied to generate volume-preserving integrators for source-free systems.
Therefore, one may also have other different kinds of decompositions and other different kinds
of correspondences based on different kinds of essentially two-dimensional symplectic maps.

Sternberg proved in [7] a normal form reduction theorem of C∞ volume-preserving
maps near fixed points. The theorem says that any C∞ volume-preserving transformation
defined in some neighbourhood of the origin, keeping the origin fixed, can be brought by a
volume-preserving change of coordinates to a normal form of the following form:

x̂i = xifi(x1x2 · · · xn), i = 1, 2, . . . , n, (2.16)
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if the Jacobian matrix of the transformation at the origin satisfies a so-called regularity
condition, where fi are C∞ functions of one variable with

n∏
i=1

fi = 1. (2.17)

Sternberg also noted that the set of germs of these normal forms falls into a finite number
of classes, each of which constitutes a maximal commutative subgroup of the group of local
C∞ volume-preserving maps. We remark here that any map of the normal form (2.16) with
f = (f1, f2, . . . , fn) satisfying (2.17) is a composition of the following n − 1 essentially
two-dimensional area-preserving maps:

x̂k = xkf1 · · · fk

x̂k+1 = xk+1
1

f1 · · · fk

, k = 1, 2, . . . , n − 1

x̂j = xj , j �= k, k + 1.

(2.18)

These n − 1 essentially two-dimensional area-preserving maps are also in the class of normal
forms and therefore commute with one another. This decomposition of volume-preserving
normal forms is consistent with the decomposition for general volume-preserving maps
described before.

The above decomposition results can be generalized to the case when the volume form
is not canonical and, therefore, can be generalized to general Riemannian manifolds by using
the arguments of McLachlan and Quispel in [5].

3. Source-free vector fields under volume-preserving coordinates transformations
in dimension 3

The infinitesimal counterparts of volume-preserving diffeomorphisms are source-free vector
fields, which constitute one of the simple infinite-dimensional Lie algebras of vector fields
according to Cartan [12]. It may happen that the divergence of a vector field changes
under coordinate transformations. Only volume-preserving coordinate transformations
preserve the zero divergence of source-free vector fields. In this section, we give an
invariant characterization of source-free vector fields under volume-preserving coordinate
transformations. This characterization reveals some intrinsic property of source-free systems
and is hoped will provide a new way to construct volume-preserving integrators.

A source-free vector field X = (X1, X2, . . . , Xn)
T on Rn can be expressed, at least

locally, by an anti-symmetric tensor potential, say a = (aij )1�i,j�n, of order 2 as follows:

Xi =
n∑

j=1

∂aij

∂xj

, i = 1, 2, . . . , n. (3.1)

The tensor potential a may be chosen, for uniqueness, to satisfy the following normalizing
conditions:

aij = 0 for |i − j | � 2 (3.2)

as was done in [1]. So the dynamical system (phase flow) associated with the source-free
vector field X is defined, at least locally, by the differential equations

ẋi = −∂ai−1,i

∂xi−1
+

∂ai,i+1

∂xi+1
, i = 1, 2, . . . , n (3.3)
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where we take a01 = an,n+1 = 0, or more compactly,

ẋ =
n−1∑
k=1

J (k)∇ak,k+1. (3.3′)

In (3.3) and (3.3′), we have used the notation ẋi = dxi

dt
,∇h = (

∂h
∂x1

, ∂h
∂x2

, . . . , ∂h
∂xn

)T
, the gradient

of differentiable function h : Rn → R and

J (k) = (Jij )1�i,j�n with Jij = −Jji =
{

1, i = k, j = k + 1;
0, otherwise.

(3.4)

Below we examine the transformation properties of source-free systems under volume-
preserving changes of coordinates. For this we start with the system of the form (3.3′) and
assume a C∞ volume-preserving change of coordinates � : ξ = (ξ1, ξ2, . . . , ξn)

T → x =
(x1, x2, . . . , xn)

T

xi = �i(ξ1, ξ2, . . . , ξn), i = 1, 2, . . . , n. (3.5)

Under transformation (3.5), system (3.3) turns into

ξ̇ =
n−1∑
k=1

�−1
∗ (ξ)J (k)�−T

∗ (ξ)∇ãk,k+1(ξ), (3.6)

where �−1
∗ (ξ) denotes the inverse of the Jacobian matrix of transformation (3.5) which is

valued at ξ , �−T
∗ (ξ) is the transpose of �−1

∗ (ξ) and

ãk,k+1(ξ) = ak,k+1(�(ξ)). (3.7)

� is volume preserving by assumption, we have det �(ξ) = 1 everywhere. Therefore,

�−1
∗ (ξ) = (�∗

ij (ξ))1�i,j�n, with �∗
ij (ξ) = (−1)i+j det �ij

∗ (ξ), (3.8)

where �
ij
∗ (ξ) is the (n − 1) × (n − 1) matrix obtained from n × n matrix �∗(ξ) by removing

the ith row and j th column. In general, it is difficult to simplify equation (3.6) further if n is
large. For n = 3, however, this equation may be reduced to a much simpler form.

Theorem 3. For n = 3, equation (3.6) is reduced to
ξ̇1 = −{�1, ã23}23 − {�3, ã12}23,

ξ̇2 = −{�1, ã23}31 − {�3, ã12}31,

ξ̇3 = −{�1, ã23}12 − {�3, ã12}12

(3.9)

if the coordinate change (3.5) is volume preserving. In (3.9), we used the notation

{f, g}ij = ∂f

∂ξi

∂g

∂ξj

− ∂f

∂ξj

∂g

∂ξi

, 1 � i, j � 3 (3.10)

for differentiable functions f and g of variables ξ = (ξ1, ξ2, ξ3)
T .

Proof. It is clear that the matrix �−1
∗ J (1)�−T

∗ is skew-symmetric, therefore we may assume

�−1
∗ J (1)�−T

∗ =

 0 c12 c13

−c12 0 c23

−c13 −c23 0

 .
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A simple calculation, with the use of the assumption that � is volume preserving, gives

c12 =
∣∣∣∣∣
∂�2
∂ξ2

∂�2
∂ξ3

∂�3
∂ξ2

∂�3
∂ξ3

∣∣∣∣∣
∣∣∣∣∣
∂�1
∂ξ1

∂�1
∂ξ3

∂�3
∂ξ1

∂�3
∂ξ3

∣∣∣∣∣ −
∣∣∣∣∣
∂�1
∂ξ3

∂�1
∂ξ2

∂�3
∂ξ3

∂�3
∂ξ2

∣∣∣∣∣
∣∣∣∣∣
∂�2
∂ξ3

∂�2
∂ξ1

∂�3
∂ξ3

∂�3
∂ξ1

∣∣∣∣∣ = ∂�3

∂ξ3
,

c13 =
∣∣∣∣∣
∂�2
∂ξ2

∂�2
∂ξ3

∂�3
∂ξ2

∂�3
∂ξ3

∣∣∣∣∣
∣∣∣∣∣
∂�1
∂ξ2

∂�1
∂ξ1

∂�3
∂ξ2

∂�3
∂ξ1

∣∣∣∣∣ −
∣∣∣∣∣
∂�1
∂ξ3

∂�1
∂ξ2

∂�3
∂ξ3

∂�3
∂ξ2

∣∣∣∣∣
∣∣∣∣∣
∂�2
∂ξ1

∂�2
∂ξ2

∂�3
∂ξ1

∂�3
∂ξ2

∣∣∣∣∣ = −∂�3

∂ξ2
,

c23 =
∣∣∣∣∣
∂�2
∂ξ3

∂�2
∂ξ1

∂�3
∂ξ3

∂�3
∂ξ1

∣∣∣∣∣
∣∣∣∣∣
∂�1
∂ξ2

∂�1
∂ξ1

∂�3
∂ξ2

∂�3
∂ξ1

∣∣∣∣∣ −
∣∣∣∣∣
∂�1
∂ξ1

∂�1
∂ξ3

∂�3
∂ξ1

∂�3
∂ξ3

∣∣∣∣∣
∣∣∣∣∣
∂�2
∂ξ1

∂�2
∂ξ2

∂�3
∂ξ1

∂�3
∂ξ1

∣∣∣∣∣ = ∂�3

∂ξ1
.

Similarly,

�−1
∗ J (2)�−T

∗ =


0 ∂�1

∂ξ3
− ∂�1

∂ξ2

− ∂�1
∂ξ3

0 ∂�1
∂ξ1

∂�1
∂ξ2

− ∂�1
∂ξ1

0

 .

As a consequence, (3.9) is derived from (3.6) with the notation (3.10).
If a source-free system takes, instead of (3.3), the more general form

ẋi =
n∑

j=1

∂aij

∂xj

, i = 1, 2, . . . , n, (3.11)

with skew-symmetric tensor potentials a = (aij )1�i,j�n. Then for n = 3, under a volume-
preserving coordinate transformation (3.5), (3.11) turns into the following form:

ξ̇1 = −{�1, ã23}23 + {�2, ã13}23 − {�3, ã12}23,

ξ̇2 = −{�1, ã23}31 + {�2, ã13}31 − {�3, ã12}31,

ξ̇3 = −{�1, ã23}12 + {�2, ã13}12 − {�3, ã12}12,

(3.12)

and (3.9) is just the case of (3.12) where a13 = 0, which makes (3.11) become (3.3) for n = 3.
If coordinate transformation (3.5) is the identity, then (3.12) is nothing but (3.11) in the

case n = 3. Therefore, (3.12) gives an alternative general form of source-free systems in three
dimensions.

The generalization of the transformation formula of form (3.12) to higher dimensional
cases does not seem possible, because for n > 3, the number of the components of a
skew-symmetric tensor potential a = (aij )1�i,j�n is strictly bigger than the number of the
components of a coordinate transformation. �

Theorem 3 gives an invariant representation of source-free vector fields under volume-
preserving coordinate transformation and, therefore, reveals an intrinsic property of source-free
systems. We hope this characterization can help provide a new way to construct volume-
preserving integrators for source-free systems. We would like to discuss this topic separately
and do not give more developments in this paper.

4. Lie algebra of skew-symmetric tensor potentials

Skew-symmetric tensor potentials of second order were introduced to represent general source-
free systems in a local sense. They were also successfully applied to construct volume-
preserving integrators [1]. Theorem 3 gives a kind of invariant representation of source-free
vector fields in dimension 3 under volume-preserving coordinate transformations by skew-
symmetric tensor potentials. This representation has a very elegant and symmetric form, which
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contrasts with that of Hamiltonian vector fields under symplectic coordinate transformations
on the symplectic space. In this section, we study the Lie-algebraic structure of the vector
space of skew-symmetric tensor potentials, which should be naturally induced from the Lie
algebra of source-free vector fields. This may also be regarded as a generalization of the scalar
potential Lie algebra of Hamiltonian vector fields to tensor potential Lie algebra of source-free
fields.

Let Vn be the Lie algebra of C∞ smooth vector fields on Rn with the usual Jacobi–Lie
bracket

[X, Y ] = X∗Y − Y∗X, (4.1)

where X∗ denotes the Jacobian matrix of the vector field X. We consider the Lie subalgebra
SVn of source-free vector fields on Rn. SVn is a simple Lie algebra of infinite dimensions
[12]. To any source-free vector field X, there corresponds a skew-symmetric tensor potential
a = (aij )1�i,j�n such that X is determined by a from (3.1). It is seen from section 3 that a is
not uniquely determined in this way. For uniqueness, one has to require additional normalizing
conditions.

Let TPn be the set of all C∞ skew-symmetric tensor potentials of form a = (aij )1�i,j�n.
We would like to introduce a Lie algebraic structure on TPn so that the linear map from TPn

to SVn given by (3.1) is a Lie algebra homomorphism. If this were the case, then any two
skew-symmetric tensor potentials a = (aij )1�i,j�n and b = (bij )1�i,j�n might associate with
another skew-symmetric tensor potential {a, b} such that

[Xa,Xb] = X{a,b}, (4.2)

where Xa denotes the source-free vector field with tensor potential a, i.e.,

Xi
a =

n∑
j=1

∂aij

∂xj

, i = 1, 2, . . . , n (4.3)

in components.
By (4.1), the ith component of the vector field [Xa,Xb] equals to

[Xa,Xb]i =
n∑

k=1

(
∂Xi

a

∂xk

Xk
b − ∂Xi

b

∂xk

Xk
a

)
.

The use of free divergence of Xa and Xb leads to

[Xa,Xb]i =
n∑

k=1

∂

∂xk

(
Xi

aX
k
b − Xk

aX
i
b

)
,

which suggests the following possible definition of {a, b}:
{a, b}ij = Xi

aX
j

b − Xj
aX

i
b, i, j = 1, 2, . . . , n, (4.4a)

or, in compact form,

{a, b} = XaX
T
b − XbX

T
a . (4.4b)

The bracket defined above is skew-symmetric and bilinear. However, it does not satisfy
the Jacobian identity and, therefore, is not a Lie bracket. We separate the cases n = 3 and
n > 3.



5612 Z-J Shang

4.1. Case n = 3

By direct but a little bit cumbersome calculations one easily verifies the identity

{{a, b}, c}i,j + {{b, c}, a}ij + {{c, a}, b}ij = ∂Habc

∂xk

(4.5)

for an even permutation (ijk) of (123), where

Habc = X1
a

(
X3

bX
2
c − X2

bX
3
c

)
+ X2

a

(
X1

bX
3
c − X3

bX
1
c

)
+ X3

a

(
X2

bX
1
c − X1

bX
2
c

)
= −(Xa,Xb × Xc). (4.6)

Here, we denote by (X, Y ) the inner product and by X × Y the vector product of three-
dimensional vectors X and Y.

Equation (4.5) does not vanish in general, therefore, the above defined bracket is not a
Lie bracket. Moreover, it seems difficult to modify the definition (4.4) so that {a, b} is a Lie
bracket and the relation (4.2) can be preserved.

It is observed, however, that the right-hand side of (4.5) has a special form. Define
operator ∇̃ : C∞(R3) → TP3 by

∇̃H =


0 ∂H

∂x3
− ∂H

∂x2

− ∂H
∂x3

0 ∂H
∂x1

∂H
∂x2

− ∂H
∂x1

0

 , (4.7)

then (4.5) becomes

{{a, b}, c} + {{b, c}, a} + {{c, a}, b} = ∇̃Habc (4.5′)

with Habc given by (4.6). Let

TP c
3 = ∇̃(C∞(R3)),

with the range of the operator ∇̃, we have

Lemma 2. For a ∈ TP3, the following statements are equivalent:

(i) Xa = 0;
(ii) a ∈ TPc

3;
(iii) {a, b} = 0 for any b ∈ TP3.

Let X : TPn → SVn be the linear map defined by (4.3), then it is an onto (but not one to
one) map. From lemma 2, it follows that TPc

3 is just the kernel ofX in the case n = 3 (lemma 2,
(i) and (ii)) and also the centre1 of TP3 under the bracket {·, ·} (lemma 2, (ii) and (iii)). If we
define the following equivalence relation in TP3:

a ∼ b if a − b ∈ TPc
3, (4.8)

then the map, naturally induced by this equivalence,

X̃ = X / ∼: TP3/TPc
3 → SV3

[a] → X[a] = Xa

(4.9)

is a Lie algebra isomorphism, where [a] denotes the class of elements equivalent to a. The
Lie bracket of TP3

/
TPc

3, induced by this equivalence, is given as follows:

{[a], [b]} = [{a, b}]. (4.10)

To conclude, we have
1 The set of all a ∈ TPn such that {a, b} = 0 for any b ∈ TPn is called the centre of TPn. The centre is a linear
subspace of the linear space TPn.
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Theorem 4. The bracket defined by (4.10) is a Lie bracket, therefore, TP3
/

TPc
3, with this Lie

bracket, is a Lie algebra. Moreover, the map X̃ : [a] → X[a] given by (4.9) and (4.3) is a
Lie-algebra isomorphism from TP3

/
TPc

3 to SV3, i.e., the following relation holds:

[X[a], X[b]] = X{[a],[b]}, (4.11)

which is nothing but (4.2).

4.2. Case n > 3

With the bracket defined by (4.4), one can verify the identities

{{a, b}, c}ij + {{b, c}, a}ij + {{c, a}, b}ij = −
n∑

k=1

∂Hk
ij (abc)

∂xk

i, j = 1, 2, . . . , n, (4.12)

where

Hk
ij (abc) = Xi

a

(
X

j

bX
k
c − Xk

bX
j
c

)
+ Xj

a

(
Xk

bX
i
c − Xi

bX
k
c

)
+ Xk

a

(
Xi

bX
j
c − X

j

bX
i
c

)
. (4.13)

Lemma 3. For any a, b, c ∈ TPn,
(
Hk

ij (abc)
)

1�i,j,k�n
is a skew-symmetric tensor field of

order 3 and is invariant with respect to even permutations of (abc).

Equation (4.12) does not vanish in general and, therefore, the bracket defined by (4.4) is
not a Lie bracket. Let CTPn be the set of all C∞ skew-symmetric tensor fields of order 3 on
Rn and define the operator ∇̃ : CTPn → TPn by

∇̃H = aH (4.14)

with

aH
ij =

n∑
k=1

∂Hk
ij

∂xk

(4.15)

for H = (
Hk

ij

)
1�i,j,k�n

∈ CTPn, then (4.12) implies that

{{a, b}, c} + {{b, c}, a} + {{c, a}, b} ∈ ∇̃(CTPn) (4.16)

for any a, b, c ∈ TPn. Denote by TP c
n ∇̃(CTPn). The following lemma can easily be proved.

Lemma 4. For a ∈ TPn, the following statements are equivalent:

(i) Xa = 0;
(ii) a ∈ TPc

n;
(iii) {a, b} = 0 for any b ∈ TPn.

It follows from lemma 4 that TPc
n is the kernel of the linear mapX : TPn → SVn (lemma 4,

(i) and (ii)) and is the centre of TPn under the bracket {·, ·} (lemma 4, (ii) and (iii)). By virtue
of this fact, we may introduce the equivalence relation in TPn as follows:

a ∼ b if a − b ∈ TPc
n,

and have the natural induced linear map

X̃ = X / ∼: TPn/TPc
n → SVn

[a] → X[a] = Xa,

where [a] is the class of elements equivalent to a. It is clear that the bracket defined by (4.10)
is also well defined and a Lie bracket in the case n > 3 and the map X̃ is a Lie-algebra
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isomorphism from TPn/TP c
n to SVn. To summarize, the parallel statements of theorem 4 are

valid in the case n > 3.
As the referees mentioned, the exposition and proof of some results in sections 3 and 4

could be simpler and clearer using the concepts and notation of exterior differential forms.
Source-free vector fields in SVn are in 1–1 correspondence with closed (n−1)-forms in �n−1,
which can be characterized locally by the derivative (action of dn−2) of (n − 2)-forms, giving
the skew-symmetric tensor potentials. The exact sequence

· · · → �n−3 → �n−2 → �n−1 → �n → 0

of the exterior differential forms under the exterior derivatives gives �n−2/Range(dn−3) =
�n−2/Kernel(dn−2), which is nothing but isomorphic to the module space TPn

/
TPc

n, as
was characterized above. A general local representation of volume-preserving systems on a
symplectic manifold was given in [13] where, more interestingly, the so-called Euler–Lagrange
cohomological groups were also developed for source-free vector fields.

In the current paper, we did not adopt this more modern and geometrical framework.
We adopted the coordinate formalism instead, because the coordinate language can help
give an explicit invariant representation of source-free vector fields under volume-preserving
coordinate transformations (section 3) and also help give an explicit characterization of the
quotient elements by the Jacobian cyclic sum of any three tensor potentials (section 4).
These results do not seem obvious even in the geometrical language. However, the exterior
differential calculus and the corresponding geometrical arguments can really help one have a
better understanding of the structures of volume-preserving systems and even more general
systems of Lie type. Sections 3 and 4 of this paper result from the attempt to generalize the
well-known Poisson representation of Hamiltonian systems to the volume-preserving case.
For the Poisson structure and relevant geometrical theory, see [14–16].

The exterior differential calculus as well as topological or geometrical consideration has
substantially come into numerical analysis in recent years (see [17–20] and references therein).
Many structure-preserving finite elements have been constructed for elastic problems [18, 19]
and for electromagnetic problems [17, 20]. From these examples of excellent works, one
can see that the preservation of relevant topological structures of continuous systems in
discretizations can naturally lead to remarkable numerical stability and give optimal error
estimates in some sense. Discrete analogues of exterior differential calculus were developed
by many authors (see, e.g., [21–25]).

Acknowledgments

The author thanks the anonymous referees for their helpful comments for the modification of
the manuscript. This work was supported by the Special Funds for Major State Basic Research
Projects of China.

References

[1] Feng K and Shang Z J 1995 Volume-preserving algorithms for source-free dynamical systems Numer.
Math. 71 451–63

[2] Thyagaraja A and Haas F A 1985 Representation of volume-preserving maps induced by solenoidal vector
fields Phys. Fluids 28 1005–7

[3] Shang Z J 1994 Generating functions for volume-preserving mappings and Hamilton–Jacobi equations for
source-free systems Sci. China 37 1172–88

[4] Quispel G R W 1995 Volume-preserving integrators Phys. Lett. A 206 26–30
[5] McLachlan R I and Quispel G R W 1998 Generating functions for dynamical systems with symmetries, integrals,

and differential invariants Phys. D 112 298–309

http://dx.doi.org/10.1007/s002110050153
http://dx.doi.org/10.1063/1.865093
http://dx.doi.org/10.1016/0375-9601(95)00586-R
http://dx.doi.org/10.1016/S0167-2789(97)00218-2


Volume-preserving maps 5615

[6] Shang Z J 1994 On the construction of the volume-preserving difference schemes for source-free systems via
generating functions J. Comput. Math. 12 265–72

[7] Sternberg S 1959 The structure of local homeomorphisms: III Am. J. Math. 81 578–604
[8] Moser J 1956 The analytic invariants of an area-preserving mapping near hyperbolic point Commun. Pure Appl.

Math. 19 673–92
[9] Weyl H 1940 The method of orthogonal projection in potential theory Duke Math. J. 7 411–44

[10] Lomeli H E and Meiss J D 1998 Quadratic volume-preserving maps Nonlinearity 11 557–74
[11] Moser J 1994 On quadratic symplectic mappings Math. Z. 216 417–30
[12] Cartan E 1909 Les groupes de transformations continus, infinis, simples Ann. École Norm 26 93–161
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[25] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Difference discrete variational principles, Euler–Lagrange

cohomology and symplectic, multisymplectic structures: I. Difference discrete variational principle Commun.
Theor. Phys. 37 1–10

http://dx.doi.org/10.1215/S0012-7094-40-00725-6
http://dx.doi.org/10.1088/0951-7715/11/3/009
http://dx.doi.org/10.1142/S0217732303011708
http://dx.doi.org/10.1007/s002110100348
http://dx.doi.org/10.1017/S0962492902000041
http://dx.doi.org/10.1016/j.apnum.2004.09.035

	1. Introduction
	2. Representations of local volume-preserving diffeomorphisms with
	3. Source-free vector fields under volume-preserving coordinates
	4. Lie algebra of skew-symmetric tensor potentials
	4.1. Case
	4.2. Case

	Acknowledgments
	References

